The Drosophila wispy gene is required for RNA localization and other microtubule-based events of meiosis and early embryogenesis.

نویسندگان

  • A E Brent
  • A MacQueen
  • T Hazelrigg
چکیده

RNAs are localized by microtubule-based pathways to both the anterior and posterior poles of the developing Drosophila oocyte. We describe a new gene, wispy, required for localization of mRNAs to both poles of the egg. Embryos from wispy mothers arrest development after abnormal oocyte meiosis and failure of pronuclei to fuse. Our analysis of spindle and chromosome movements during meiosis reveals defects in spindle structures correlated with very high frequencies of chromosome nondisjunction and loss. Spindle defects include abnormally shaped spindles, spindle spurs, and ectopic spindles associated with lost chromosomes, as well as mispositioning of the meiosis II spindles. The polar body nuclei do not associate with their normal monastral arrays of microtubules, the sperm aster is reduced in size, and the centrosomes often dissociate from a mitotic spindle that forms in association with the male pronucleus. We show that wispy is required to recruit or maintain known centrosomal proteins with two types of microtubule organizing centers (MTOCs): (1) the central MTOC that forms between the meiosis II tandem spindles and (2) the centrosomes of the mitotic spindle. We propose that the wispy gene product functions directly in several microtubule-based events in meiosis and early embryogenesis and speculate about its possible mode of action.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

PAP- and GLD-2-type poly(A) polymerases are required sequentially in cytoplasmic polyadenylation and oogenesis in Drosophila.

Cytoplasmic polyadenylation has an essential role in activating maternal mRNA translation during early development. In vertebrates, the reaction requires CPEB, an RNA-binding protein and the poly(A) polymerase GLD-2. GLD-2-type poly(A) polymerases form a family clearly distinguishable from canonical poly(A) polymerases (PAPs). In Drosophila, canonical PAP is involved in cytoplasmic polyadenylat...

متن کامل

Rab11 is required for maintenance of cell shape via βPS integrin mediated cell adhesion in Drosophila

In eukaryotes, vesicle trafficking is regulated by the small monomeric GTPases of the Rab protein family. Rab11, (a subfamily of the Ypt/Rab gene family) an evolutionarily conserved, ubiquitously expressed subfamily of small monomeric Rab GTPases, has been implicated in regulating vesicular trafficking through the recycling of endosomal compartment. In an earlier communication, we have shown th...

متن کامل

The Drosophila Microtubule-Associated Protein Mini Spindles Is Required for Cytoplasmic Microtubules in Oogenesis

The XMAP215/TOG family of proteins is a closely related set of MAPs (microtubule-associated proteins) found in animals, yeast, and plants . In yeast and animal cells, the XMAP215/TOG proteins are required for both mitosis and meiosis. Although effects of XMAP215/TOG proteins on cytoplasmic microtubules have not previously been shown in animal cells, in plants the Arabidopsis family member MOR1 ...

متن کامل

An Amino-Terminal Polo Kinase Interaction Motif Acts in the Regulation of Centrosome Formation and Reveals a Novel Function for centrosomin (cnn) in Drosophila.

The formation of the pericentriolar matrix (PCM) and a fully functional centrosome in syncytial Drosophila melanogaster embryos requires the rapid transport of Cnn during initiation of the centrosome replication cycle. We show a Cnn and Polo kinase interaction is apparently required during embryogenesis and involves the exon 1A-initiating coding exon, suggesting a subset of Cnn splice variants ...

متن کامل

Mutations in centrosomin reveal requirements for centrosomal function during early Drosophila embryogenesis

BACKGROUND Although centrosomes serve as the primary organizing centers for the microtubule-based cytoskeleton in animal cells, various studies question the requirements for these organelles during the formation of microtubule arrays and execution of microtubule-dependent processes. Using a genetic approach to interfere with centrosomal function, we present an assessment of this issue, in the c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Genetics

دوره 154 4  شماره 

صفحات  -

تاریخ انتشار 2000